Tech-How Make the Difference!

Next Generation
World Firstly Developed
Eco-Friendly
Flange Gasket Materials

Since established 1969, JEIL E&S has been dedicated to manufacturing wide range of proven high quality sealing and ahead giant leap for strong enterprise of 'Hidden Champion' in soft gasket materials for next century. Specially invented LEAKBLOK®, came into the world with significant R&D investment and state-of-the-art facilities extension and proudly represent environmentally friendly compressed gasket materials.


Our new UMCS* & UMPS* have officially awarded NET* certifying from MKE*, Korean government. We set the target no use VOC* contents on all new LEAKBLOK® process by guarantee considerable improvement of superior sealability, strong durability and outstanding flexibility and other performances. Portable water application with WRAS* approval and suitable for steam, clean, contaminated fluid lines. Next generation flange gasket material, LEAKBLOK® especially represent superior sealability on gas line and excellent electrical isolation performance.

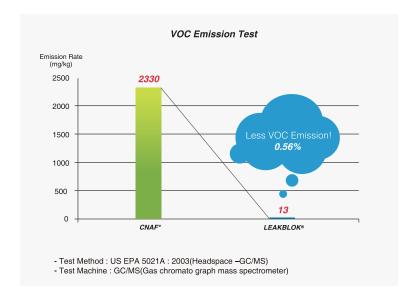
1969년 설립 이후 반세기 동안 최고의 품질과 성능을 지켜온 제일 E&S가 향후 100년을 준비하는 강소기업으로 나아가기 위한 새로운 도약을 준비 하고 있습니다. R&D 센터를 확장 이전하고, 신규 설비에 대한 과감한 투자로 개발한 친환경 압축시트 LEAKBLOK®을 여러분께 소개해 드립니다.

자사에서 개발한 UMCS* & UMPS*는 새로운 기술을 증명하는 NET* 인증을 취득하였으며, VOC* 을 사용하지 않는 친환경 공법에 더하여 기존압축 시트 대비 뛰어난 밀봉성, 강한 내구성과 탁월한 유연성을 보여 주고, WRAS* 인증을 통해 음용수 라인에도 적용되며, 유체의 오염이나 스팀 및 청정성이 요구되는 라인에도 사용 가능합니다. 특히 기존 압축 시트와는 달리 Gas Line 에서도 우수한 sealing 성능과 절연 성능까지 갖춘 새로운 개념의 차세대 가스켓 입니다.

*UMCS: Unique Mechanical Compounding System
*UMPS: Unique Machinery Process System
*NET: New Excellent Technology
*MKE: Ministry of Knowledge Economy
*VOC: Volatile Organic Compounds
*WRAS: Water Regulation Advisory Scheme
*MECS: Mill Edge Coiling System

Chapter 1

Global Leading Innovative Green Process

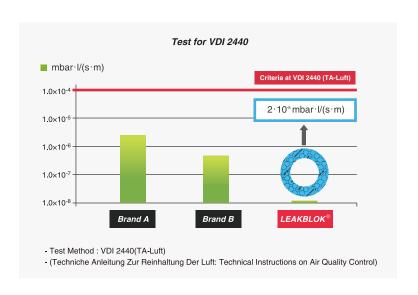

NET* approved in 2013, specially invented unique method of UMCS* & UMPS* contribute to excellent reduction of VOC* emission because of no using solvent from compounding and manufacturing process. LEAKBLOK® is proven reliability from VOC* emission compare with existing conventional compressed sheet materials.

LEAKBLOK®은 자사가 독자개발한 UMCS* & UMPS* 공법으로 2013년 NET* 인증을 받았고, 이를 통해 VOC*를 제조공정에서 부터 완제품까지 배출하지 않는 최첨단 친환경 시트임.

*NET: New Excellent Technology
*UMCS: Unique Mechanical Compounding System
*UMPS: Unique Machinery Process System

*VOC: Volatile Organic Compounds

*CNAF: Compressed Non-Asbestos Fiber Gasket

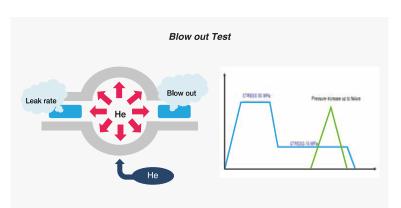

Chapter 2

Superior Gas Permeability

1. Excellent Gas Permeability

High grade of next generation gasket, LEAKBLOK® shows excellent gas permeability with dedicated protection from fugitive emission control which is considered the possible risk of fire & explosion etc. It provides distinguish level of TA-Luft acceptance criteria.

고성능의 차세대 가스켓 LEAKBLOK® 은 뛰어난 기체 기밀성을 가지고 있으며 화제나 폭발등의 잠재적인 유출 위험까지도 고려한 가스켓이며 TA-Luft Test 에서도 타사 제품보다는 월등히 뛰어난 Sealing 성능을 보여주고 있음.



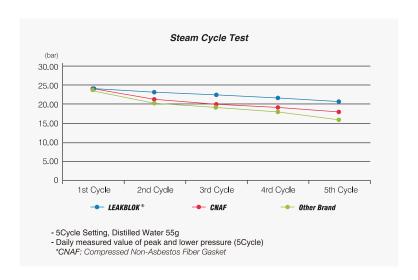
2. Peak Pressure & Blow out Test

- Test Result
- Leak rate on internal pressure applied

Internal Pressure(He)	Leak rate(atm.cm³/s)
60 bar	2.90 × 10 ⁻⁸
80 bar	2.65×10^{-4}
100 bar	3.93×10^{-2}

According to Global oil major's Type Acceptance Test, it verify stable sealing performance without leakage and breakage when internal pressure increasing over 60 bar with minimum gasket seating stress maintains. This test shall meet the qualification at variety applicable condition what related industries required.

글로벌 Oil Major Company의 Type Acceptance Test 기준에 따른 시험 결과 60 bar 이상의 내압이 적용되더라도 뛰어난 기밀성과 파손되지 않는 특성으로, 고압의 환경에서도 사용 가능하며 산업에서 요구하는 다양한 환경에서도 적용 가능함을 보여줌.

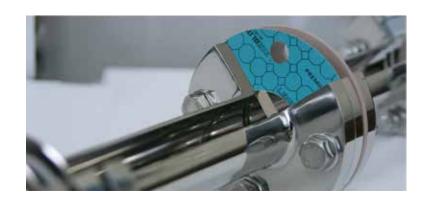


3. Steam Cycle Test

Temperature	250 ℃
Fluid	Steam, 24 bar
Seating Stress	30 MPa

Based on excellent gas permeability, it provides stable sealability at steam application compare with conventional CNAF*. Normally drastic change of thermal or pressure cycling is highly effected on sealability, but high dense inner structure of LEAKBLOK® enhance much longer and lower life cycle cost for customers.

뛰어난 기체 기밀성을 바탕으로 기존 압축 가스켓 대비하여 Steam Test에도 안정적인 기밀성을 보임. 온도 및 압력의 변동은 기밀성에 영향을 미치지만, LEAKBLOK®의 우수한 조직 구조는 기밀성 향상과 내구력 증대로 고객의 가스켓 교체 비용 절감에 기여함.



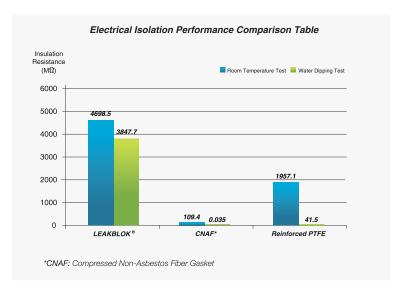
4. Durability Test

Temperature	160 ℃
Fluid	Steam, 7 bar
Seating Stress	30 MPa

Actual field test performed at a chemical plant in Korea to confirm excellent durability above specified condition and leakage has not detected at steam line for 1,000days.

내구력 검증을 위해 국내 한 화학공장에서 성능을 확인 하였고, 현장 스팀라인 장착 후 1,000일 이상 누설이 발생 되지 않았으며 우수한 내구성으로 고객 만족에 기인함.

Chapter 3


Exceptional Electrical Isolation Performance

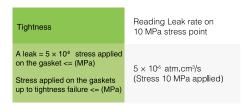
1. Electrical Isolation Performance Test

Test Method	Test Material			nsulation istance(MΩ)
Room	LEAKBL	OK®		4698.5
Temperature	CNA	F		109.4
Temperature : 21.0±3 °C Humidity : 42.0±10 %	Reinford PTFE			1957.1
	LEAKBL	OK®		3847.7
Water Dipping	CNA	F		0.035
Dipping Time : 1 hour	Reinforced PTFE			41.5
Test	Unit	Ref.	STD	LEAKBLOK®
Insulation Resistance	Ω	ASTM	D257	3.02×10 ¹²
Volume Resistance	Ω.cm	ASTM	D257	4.65×10 ¹⁴
Dielectric Strength	kV/mm	ASTM	D149	13.39
Tangent δ (ε') 1kHz, 2mm thickness	-	ASTM	D150	0.004

In accordance with authorized institute, LEAKBLOK® represents outstanding application of electrical isolation performance. Compare to testing result with conventional CNAF* and reinforced PTFE materials, LEAKBLOK® has the highest level of electrical isolation performance at ambient and water dipping conditions.

ASTM D150

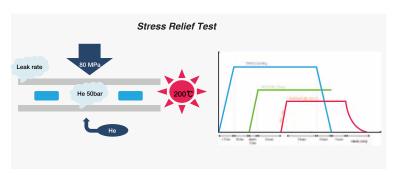
LEAKBLOK® 은 공인 시험 기관의 검증을 통하여 기존 압축 가스켓과 reinforced PTFE 재질 보다 탁월한 전기적 특성을 나타내며 상온의 침수 조건에도 높은 수준의 절연 성능을 보임.


Dielectric Constant (ε")

Chapter 4

Excellent Sealability at Low Seating Stress

1. Stress Relief Test


With superior heat resistance of LEAKBLOK®, above test result demonstrates excellent sealability on against critical applicable conditions (High temperature & pressure but decreasing seating stress). This strength has shown stable sealing advantage on relief bolting stress at high temperature condition.

2. Low Seating Stress Test

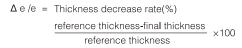
With special UMCS*, LEAKBLOK® shows outstanding stability at low seating stress and suitable where difficulty to applying standard torque in actually assembling construction fields.

LEAKBLOK®의 특수 UMCS* 공법을 통하여, 압축 가스켓 에서 적용이 어려운 낮은 체부 압력에도 우수한 Sealing 성능을 보이며 현장 작업시, 충분한 체결이 어려운 열악한 환경에서도 적용 가능함.

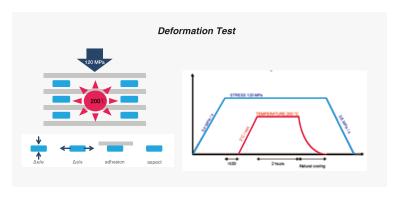
*UMCS: Unique Mechanical Compounding System

LEAKBLOK®의 뛰어난 내열/기밀 성능은 급변하는 운전 조건 (높은 온도/ 고압/ 체부면압 감소) 에서도 Sealing 성능이 유지됨을 확인 할 수 있으며, 이러한 특성으로 인하여 고온 환경에서 체결부의 이완으로 인한 누설 문제에도 안정적으로 사용 가능한 장점을 가짐.

	Test Result		
Specimen	LEAKBLOK®	CNA	\F
Seating Stress(MPa)	20	20	40
N2 Leakage Test (10 bar)	No Leak	Leak(Permeation)	No Leak
Hydraulic Test (31 bar)	No Leak	No Leak	No Leak


Chapter 5

Less Deformation


Deformation Test (Preselection Test)

Simultaneously applied condition of high seating stress 120MPa and 200 $^{\circ}$ C, LEAKBLOK $^{\circ}$ has strong physical properties and less deformation while testing verification of gasket thickness, surface change and breakage.

120MPa 의 높은 체부 면압과 200℃의 고온 조건에서도 LEAKBLOK® 의 뛰어난 물리적 강도를통해, 가스켓의 두께 및 체적변화가 최소화 됨을 확인할 수 있음.

 Δ s/s = Surface increase rate(%) $\frac{\text{final Surface - Initial Surface}}{\text{Initial Surface}} \times 100$

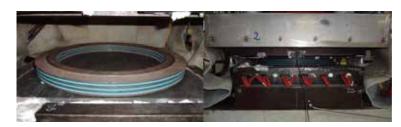
		Test Re	esu l t		
Test Name	Criteria	Gasket 1	Gasket 2	Gasket 3	Acceptance
Δ e/e	Max 20 %	17.38	16.4	17.52	Yes
Δ s/s	Max 25 %	21.57	22.6	21.43	Yes

Chapter 6

Easy Removability

1. Removability Test

LEAKBLOK® has designed to consider maintenance cost reduction in industrial fields. Performed testing under the condition of 120MPa and 200 °C, LEAKBLOK® has shown excellent and easy removability with no adhesive on the flange which dedicated to cost saving and flange protection.


120MPa 의 높은 체부 면압과 200℃의 고온 조건에서도 LEAKBLOK® 만의 뛰어난 탈착 성능으로 유지 보수 시 손쉽게 가스켓 교체가 가능하며, 플랜지 표면 손상을 최소화하여 교체할 수 있음.

2. Removability for Heating Cycle Test

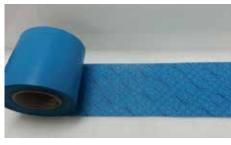
- High Temperature and Pressure test
- 200 °C × 96 hours : 1 Cycle × 4 Days (10 hours Heating + 14 hours Cooling)

ITEM	Removability (Surface check)
LEAKBLOK®	Seating & Removability : ★★★★ Easy removal and no creep and deformation.
Brand "A"	Seating & Removability : ★★★☆ Easy removal and no creep and deformation.
Brand "B"	Seating & Removability : ★★☆☆ Stick at surface and need to force to remove.

*CNAF: Compressed Non-Asbestos Fiber Gasket

Condition: Seating Stress 120MPa and 200℃

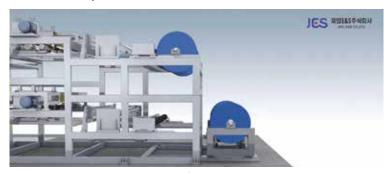
Test Result: No Adhesion


Outstanding surface quality of LEAKBLOK® has an exceptional removability without anti-stick surface treatment. Unique surface roughness fulfill less deformation, good adaptability for flange irregularities.

LEAKBLOK® 의 뛰어난 Anti-Stick 성능으로 별도의 후처리를 하지 않아도 기존 압축시트 보다 월등한 탈착성을 보여줌.

Chapter 7

Sheet in Roll - by MECS 1st in the world


1. Mill Edge Coiling System(MECS) as Various Customers Requiments

Thickness	Width	Length
0.8mm~3.2mm	50"(1270mm) 60"(1500mm)	50"(1270mm) 60"(1500mm) 3M ~ 20M & etc

(Please consult to maximum Length with JEIL Sales team.)

*SECS: Slit Edge Coiling System *MECS: Mill Edge Coiling System

Focus on cost minimization, LEAKBLOK® is independently supplying MECS*/SECS* considerably efficient to cost reduction, benefits from unnecessary loss, productivity enhancement etc. It provides unique 'TAILOR MADE' solution from SECS* with various width of roll base international industrial standard by fulfill customer's automation facilities, customized process characteristics.

LEAKBLOK® 만의 독자적인 MECS* & SECS* 공법으로 "고객 맞춤형" 대량 생산 시스템에 최적화된 폭과 길이로 공급 가능하여 Loss 절감 및 생산성 향상을 통하여 혁신적인 원가 절감 효과를 가짐.

Chapter 8

Excellent Productivity

Specially designed by UMCS* process contribute to remarkable improvement on high productivity and excellent die-cutting ability caused from conventional CNAF*.

LEAKBLOK® 만의 독자적인 UMCS* 공법으로 기존 CNAF* 에서 발생되는 낮은 가공성으로 인한 생산성 저하 문제를 획기적으로 개선하였으며, LEAKBLOK®의 손쉬운 타발성, 가공성으로 고객 생산성 향상에 기여함.

*UMCS: Unique Mechanical Compounding System *CNAF: Compressed Non-Asbestos Fiber Gasket

LEAKBLOK® Properties

Grade		LE/	LEAKBLOK® Premium			
Composition		Aramid Fiber Glass Fiber NBR Binder	Aramid Fiber Glass Fiber SBR Binder	Aramid Fiber Glass Fiber NBR Binder		
Model No		P200	P300	P400		
	Basic Color	Blue	Silver	Brown		
Temperature	Continuous Operating(℃)	-150~220	-150~220	-150~260		
	Short-term peak(℃)	-196~350	-196~350	-196~430		
Pressure	Short-term peak(bar)	80	80	100		
Test Method	Physical Properties	P200	P300	P400		
ASTM D792	Density[g/cm³]	1.9	1.9	1.9		
ASTM F152	Tensile strength Across grain MPa[kg/cm²]	15.0 (153)	15.0 (153)	16.7 (170)		
ASTM F36J	Compressibility[%]	9	9	8		
ASTM F36J	Recovery[%]	71	73	63		
ASTM F146	Fluid Resistance after 5hrs immersions ASTM # 3 oil(150 ℃) Thickness Increase[%]	3	10	4		
	ASTM Fuel B(20~30℃) Thickness Increase[%] Weight Increase[%]	6 9	10 17	4 12		
DIN 52913	Relaxation Stress[MPa]	38.2	37.6	-		
BS 7531	- 50MPa 16hrs / 300 ℃ Relaxation Stress[MPa] - 40MPa 16hrs / 300 ℃	23.7	23.8	38.2 25.1		
VDI 2440 (TA-LUFT)	Leak rate [mbar.l/(s.m)]	2x10 ⁻⁸	2x10 ⁻⁸	2x10 ⁻⁸		
DIN 3535/6	Gas Permeability[ml/min]	≤ 0.01	≤ 0.01	≤ 0.01		
Туре Арр	proval & Test Certificate	ISO 9001/14001/18001, PE Lloyd's & ABS TA, TA-Luft, Fire Endurance Test(ISO 19	WRAS,			
4-11 pH Range Above is general range and has no guarantee for every case. Please contact us for further details.		ery case.				
	Thickness	0.8mm ~ 3.2mm				
	Width	1270mm(50"), 1500mm(60")				
	Length	1270mm(50"), 1500mm(60" (Please consult to maximum leng), 3M~10M, 15M~20M & I	ETC		
A	Applicable Fluids Portable Water, Oils, Fuels Salt Solution, gas line, Mild acids and al ETC			ld acids and alkalis &		

^{*} All data are 1.5mm thickness typical value.

^{*} 상기 물성치는 1.5t 제품의 실측값이며, 전체물성을 대표하지는 않음.

Compressed Asbestos-Free Gasket **LEAKBLOK®** Premium P200

	MATERIAL PROPERTIES		SERVICE RANGE
Product Name	LEAKBLOK® Premium P200	100	
Color	Blue(Black Printed)	90 —	
Composition	Aramid Fiber + NBR Binder	70 —	
Fluids Service	Portable Water, Oils, Fuels, Salt Solution, Mild acids and alkalis, gas line	Pressure(bar) 00 — 04 — 05 — 06 — 06 — 06 — 06 — 06 — 06 — 06	®
Pressure	Short-term peak 80bar (1160 psi)	30 —	A
Temperature	Continuous -150 $^{\circ}$ C (-238 $^{\circ}$ F) \sim 220 $^{\circ}$ C (428 $^{\circ}$ F)	10 — 0 — -200 -150	-100 -50 0 50 100 150 200 250 300 350 400
	Short-term peak -196 $^{\circ}$ C(-321 $^{\circ}$ F) \sim 350 $^{\circ}$ C(660 $^{\circ}$ F)		Temperature(°C)
pH range	4-11	Area (A)	Satisfactory area subject to chemical compatibility
Thickness	0.8 ~ 3.2(mm)	Area (B)	Usually suitable but required technical recommend by JEIL Technical team
Size	1270(W)×1270(L), 1500(W)×1500(L) Available in Rolls.	P×T(Max)	psi x°F(barx°C) / 496,480(17,600)
Certificates	Lloyd's & ABS Type Approval , TA-Luft(VDI 2440), Fire Endurance Test(ISO 19921 & 19922)	WRAS, BS 7531 Grad	e Y

	PHYSICAL PROPERTIES		II	MMERSION	PROPERTIES	
Test Method	Description	LEAKBLOK® P200	Test Method ASTM F146	Descriptio	n	LEAKBLOK® P200
ASTM D792	Density (g/cm³)	1.9	at 150℃×5hrs			
ASTM F152	Tensile Strength Across grain.MPa (kgf/mm²)	15.0(1.53)	ASTM Oil no 3	Thickness	Increase (%)	3
ASTM F36	Compressibility (%)	9	at 20~30 ℃ ×5hrs	i		
Procedure J	Recovery (%)	71	ASTM Fuel B	Thickness	Increase (%)	6
DIN 3535 -6	Gas permeability (ml/min)	≤ 0.01		Weight Inc	rease (%)	9
DIN 52913	Relaxation Stress(MPa)	00.0				
	- 50MPa 16 hours @175℃	38.2		GASKET	DESIGN DATA	
BS 7531	Relaxation Stress(MPa) - 40MPa 16 hours @300℃	23.7	Thickness (mm)	Gasket Factor(m)	•	eating Stress(y) n² (psi)
VDI 2440	Leak rate		3.2	2.00	112(1600)
(TA - Luft)	(mbar·l /(s·m)) -at 150℃ 48 hours	2·10 ⁻⁸	1.6	2.75	,	3700)
,	-at 150 C 46 Hours		0.8	3.50	457(6500)

^{*} All data are 1.5mm thickness typical value.

Innovative technology, LEAKBLOK®, absolutely distinguished from the traditional way of calendar roll production, It specially invented with environmentally friendly solvent free process.

Compare with previous product, it shows strong durability and superior at low seating stress.

Suitable for use steam and clean line, excellent protection of fluid contamination.

WARNING

- Not available with max. temperature & pressure at the same time
- Guide line only, if outside this range contact us.
- Do not re-use gaskets unless this is specifically indicated.
- Do not use gasket compounds with gasket as this will adversely affect performance.
- Please consult with JEIL's Technical team for application of steam & explosive gas line especially.
- Please consult to maximum length with JEIL sales team.

Compressed Asbestos-Free Gasket **LEAKBLOK®** Premium P300

	MATERIAL PROPERTIES	SERVICE RANGE
Product Name	LEAKBLOK® Premium P300	100
Color	Silver(Black Printed))	90 - 80 -
Composition	Aramid Fiber + SBR Binder	70 — (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
Fluids Service	Portable Water, Oils, Fuels, Salt Solution, Mild acids and alkalis, gas line	B B B
Pressure	Short-term peak 80bar (1160 psi)	30 — 20 — 10 —
Temperature	Continuous -150 ℃ (-238°F) ~ 220 ℃ (428°F)	-200 -150 -100 -50 0 50 100 150 200 250 300 350 400
	Short-term peak -196 $^{\circ}$ C(-321 $^{\circ}$ F) $^{\sim}$ 350 $^{\circ}$ C(660 $^{\circ}$ F)	Temperature(*C)
pH range	4-11	Area (A) Satisfactory area subject to chemical compatibility
Thickness	0.8 ~ 3.2(mm)	Area (B) Usually suitable but required technical recommend by JEIL Technical team
Size	1270(W)×1270(L), 1500(W)×1500(L) Available in Rolls.	P×T(Max) psi ×°F(bar×°C) / 496,480(17,600)
Certificates	Lloyd's & ABS Type Approval , TA-Luft(VDI 2440), Fire Endurance Test(ISO 19921 & 19922)	WRAS, BS 7531 Grade Y

PHYSICAL PROPERTIES			
Test Method	Description	LEAKBLOK® P300	
ASTM D792	Density (g/cm³)	1.9	
ASTM F152	Tensile Strength Across grain.MPa (kgf/mm²)	15.0(1.53)	
ASTM F36	Compressibility (%)	9	
Procedure J	Recovery (%)	73	
DIN 3535-6	Gas permeability (ml/min)	≤ 0.01	
DIN 52913	Relaxation Stress(MPa) - 50MPa 16 hours @175℃	37.6	
BS 7531	Relaxation Stress(MPa) - 40MPa 16 hours @300℃	23.8	
VDI 2440 (TA - Luft)	Leak rate (mbar·l /(s·m)) -at 150℃ 48 hours	2·10 ⁻⁸	

IMMERSION PROPERTIES				
Test Method ASTM F146	Description		LEAKBLOK® P300	
at 150 ℃×5hrs ASTM Oil no 3	Thickness In	crease (%)	10	
at 20~30 ℃ ×5hrs				
ASTM Fuel B	Thickness Increase (%)		10	
	Weight Increase (%)		17	
GASKET DESIGN DATA				
Thickness (mm) F	Gasket actor(m)	Min. Design Seat Kgf/cm 2		

112(1600)

260(3700)

457(6500)

2.00

2.75

3.50

Innovative technology, LEAKBLOK®, absolutely distinguished from the traditional way of calendar roll production, It specially invented with environmentally friendly solvent free process.

3.2

1.6

0.8

Compare with previous product, it shows strong durability and superior at low seating stress.

Suitable for use steam and clean line, excellent protection of fluid contamination.

WARNING

- Not available with max, temperature & pressure at the same time
- Guide line only, if outside this range contact us.
- Do not re-use gaskets unless this is specifically indicated.
- Do not use gasket compounds with gasket as this will adversely affect performance.
- Please consult with JEIL's Technical team for application of steam & explosive gas line especially.
- Please consult to maximum length with JEIL sales team.

^{*} All data are 1.5mm thickness typical value.

Compressed Asbestos-Free Gasket **LEAKBLOK®** Premium P400

	MATERIAL PROPERTIES		SERVICE RANGE
Product Name	LEAKBLOK® Premium P400	110 —	
Color	Brown(Black Printed))	90 —	
Composition	Aramid Fiber + NBR Binder	80 - 70 -	
Fluids Service	Portable Water, Oils, Fuels, Salt Solution, Mild acids and alkalis, gas line	Pressure(bar) 40 40 40	B
Pressure	Short-term peak 100bar (1450 psi)	30 <u> </u>	(A)
Temperature	Continuous -150 $^{\circ}$ C(-238 $^{\circ}$ F) \sim 260 $^{\circ}$ C(500 $^{\circ}$ F)	-200 -150 -100	-50 0 50 100 150 200 250 300 350 400 450 500
	Short-term peak -196 $^{\circ}$ (-321 $^{\circ}$ F) $^{\sim}$ 430 $^{\circ}$ (806 $^{\circ}$ F)		Temperature(°C)
pH range	4-11	Area (A)	Satisfactory area subject to chemical compatibility
Thickness	0.8 ~ 3.2(mm)	Area B	Usually suitable but required technical recommend by JEIL Technical team
Size	1270×1270, 1500×1500 (mm) Available in Rolls.	P×T(Max)	psi x°F(barx°C) / 725,000(26,000)
Certificates	Lloyd's & ABS Type Approval , TA-Luft(VDI 2440), Fire Endurance Test(ISO 19921 & 19922)	WRAS, BS 7531 Grad	e X

	File Elidulatice Test(ISO 1992)					
F	PHYSICAL PROPERTIES		- IN	MERSION	I PROPERTIES	:
Test Method	Description	LEAKBLOK® P400	Test Method ASTM F146	Description	n	LEAKBLOK® P400
ASTM D792	Density (g/cm³)	1.9	AOTWITTO			. 100
ASTM F152	Tensile Strength		at 150℃×5hrs			
ASTIVIF152	Across grain. MPa (kgf/mm²)	16.7(1.70)	ASTM Oil no 3	Thickness	Increase (%)	4
ASTM F36 Procedure J	Compressibility (%) Recovery (%)	8 63	at 20~30℃×5hrs			
			ASTM Fuel A	Thickness	Increase (%)	1
DIN 52913	Relaxation Stress(MPa)		ASTM Fuel B	Thickness	Increase (%)	4
	- 50MPa 16 hours @300℃	38.2				
BS 7531	Relaxation Stress(MPa)			GASKET	T DESIGN DAT	A
	- 40MPa 16 hours @300℃	25.1	Thickness	Gasket	Min. Design S	eating Stress(y)
DIN 3535 -6	Gas permeability (ml/min)	≤ 0,01	(mm)	Factor(m)	•	m² (psi)
Director o	,	_ 0,0 .	3.2	2.00	112	(1600)
VDI 2440	Leak rate (mbar·l /(s·m))	2·10-8	1,6	2.75	260	(3700)
(TA - Luft)	- at 150 °C 48 hours	2.10 -	0.8	3.50	457	(6500)

^{*} All data are 1.5mm thickness typical value.

Innovative technology, LEAKBLOK®, absolutely distinguished from the traditional way of calendar roll production, It specially invented with environmentally friendly solvent free process.

Compare with previous product, it shows strong durability and superior at low seating stress.

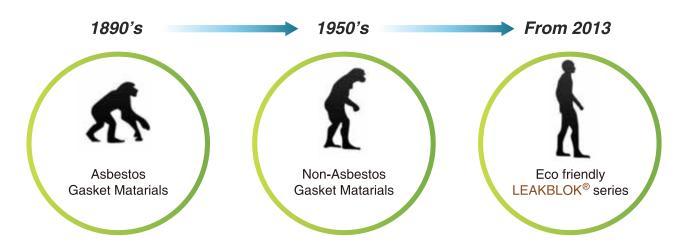
Suitable for use steam and clean line, excellent protection of fluid contamination.

WARNING

- Not available with max, temperature & pressure at thesame time
- Guide line only, if outside this range contact us.
- Do not re-use gaskets unless this is specifically indicated.
- Do not use gasket compounds with gasket as this will adversely affect performance.
- Please consult with JEIL's Technical team for application of steam & explosive gas line especially.

Chemical Resistance of LEAKBLOK®

A general guide for selection of gasketing material


MEDIUM	MOLECULA FORMULA	P200	P300	P400
Acetic acid	CH₃COOH	Α	В	А
Acetic acid, glacial	CH₃COOH	Α	А	А
Acetone	C ₃ H ₆ O	В	А	В
Acetic anhydride	(CH ₃ CO) ₂ O	Α	А	А
Acetylene	C ₂ H ₂	Α	В	А
Alum	KAI(SO ₄) ₂	Α	А	А
Ammonia	NH ₃	Α	А	А
Ammonia anhydrous	NH ₃	Α	А	А
Ammonium hydroxide	NH₄OH	Α	В	А
Aniline	C ₆ H ₅ NH ₂	С	В	С
Asphalt (TAR)		В	В	В
ASTM oil NO 1		Α	В	A
ASTM oil NO 3		Α	В	A
Barium chloride	BaCl ₂	Α	А	A
Benzene	C ₆ H ₆	В	С	В
Benzoic acid	50.0	В	В	В
Boiler feed water		A	A	A
Borax	Na ₂ B ₄ O ₇ 10H ₂ O	A		A
		A	В	A
Butane Butul accetato	C4H ₁₀	В	В	В
Butyl acetate	CH ₃ COOC ₄ H ₉			
Butyl alcohol (Butanol)		A	A	A
Butyric acid		Α	А	A
Calcium chloride	CaCl ₂	A	A	A
Calcium hydroxide	Ca(OH) ₂	Α	A	A
Calcium sulphate	CaSO ₄	Α		A
Carbon tetrachloride	CCI ₄	В	С	В
Carbonic acid 100%(Phenol)	C ₆ H ₅ OH	С	С	С
Carbon dioxide		Α	Α	A
Carbon disu l fide	CS ₂	С	С	С
Caustic soda	NaOH	С	С	С
Chlorine (DRY)	Cl ₂	В	В	В
Chlorine (WET)	Cl ₂	С	С	С
Chromic acid	H ₂ CrO ₄	В	С	В
Corn oil		Α	В	А
Chloroform	CHCI₃	В	С	В
Copper sulphate	CuSO ₄	Α	A	A
Cresol	C ₆ H ₄ (OH)CH ₃	В		В
Crude oil	C6. 14(C1.17C1.13	A	В	A
Creosote		С	С	C
Cyclo hexane	C ₆ H ₁₂	A	В	A
Copper acetate	(CH ₃ COO) ₂ Cu	A	ь .	A
Copper acetate	(Cri3COO)2Cu	^		
Datamant adultions				_
Detergent solutions	(6.11.611.)	A	A	A
Di-benzyl ether	(C ₆ H ₅ CH ₂) ₂ O	C	С	C
Diesel oil	HOOM(OLL)	A	В	A
Dimethyl formamide	HCON(CH ₃) ₂	С	С	С
Dioxane		С	С	С
Ethane	C ₂ H ₆	Α	A	A
Ethyl alcohol(Ethanol)	C ₂ H ₅ OH	Α	A	A
Ethyl acetate	CH₃COOC₂H₅	В	В	В
Ethyl chloride	C ₂ H ₅ CI	В	С	В
Ethyl ether	C ₂ H ₅ OC ₂ H ₅	Α	В	А
Ethylene chloride	(CH ₂ CI) ₂	С	С	С
Ethylene glycol	(CH ₂ OH) ₂	Α	А	А
Ferric chloride		Α	А	А
Formaldehyde	НСНО	Α	А	А
Formic acid 85%	НСООН	С		С
Freon 11	CCI₃F	В	С	В
Freon 12	CCI ₂ F ₂	A	В	A
Fuel A	-512. 2	A	В	A
Fuel B		A	В	A
Fuel C		Α	В	A
O P	(011 011) 2::2::			
Gasoline	(CH ₂ OH) ₂ CHOH	Α	С	A
Glycerine	1	Α	Α	A
Green sulfate liquor		В	В	В

MEDIUM	MOLECULA FORMULA	P200	P300	P400
Heptane	C ₇ H ₁₆	А	С	А
Hydroch l oric acid 20%	HCI	В	С	В
Hydroch l oric acid 37%	HCI	С	С	С
Hydrogen peroxide 3%	H ₂ O ₂	В	A	В
Hydrogen peroxide 35%		C	c	C
Hydrogen peroxide 35%	H ₂ O ₂	L C	C	L
Isoamyl acetate	CH ₃ COOCH ₂ CH(CH ₃) ₂	С	В	С
Isooctane		A	В	A
Isopropyl alcohol	(CH ₃) ₂ CHOH	A		A
Lactic acid 50%	СН₃СНОНСООН	A	Α	A
Lime water	Ca(OH) ₂	A		A
Lin seed oil	Ca(C.192	A	В	A
		A		A
Lurbicating oil		A	В	A
Magnesium sulphate	MgSO ₄	A		A
Methyl acetate 97%	CH₃COOCH₃	С		С
Methyl acetate 60%	CH₃COOCH₃	С		С
Methyl alcohol(Methanol)	CH₃OH	A	Α	A
Mineral oil(ASTM No 1,3)	erigen.	A	В	A
Muriatic acid		С	С	С
		1		
Naphtha		В	В	В
Nitric acid 20%	HNO ₃	С	С	С
Nitric acid 40%	HNO ₃	С	С	С
Nitric acid 96%	HNO ₃	С	С	С
Nitrobenzene	C ₆ H ₅ NO ₂	c	С	c
	00.0.02	+ -		<u> </u>
0.1	0.11	.		
Octane	C ₈ H ₁₈	A	С	A
Oleic acid	C ₁₇ H ₃₃ COOH	A		A
Oleum		C	С	С
Pentane(C ₅ H ₁₂)	C ₅ H ₁₂	A		А
Palmitic acid	C ₁₅ H ₃₁ COOH	A		A
Perchloroethylene	C ₂ C ₁₄	В	С	В
· · · · · · · · · · · · · · · · · · ·	C ₂ C ₁₄			
Petroleum ether		A	В	A
Phenol	C ₆ H ₅ OH	С	С	С
Phosphoric acid	H₃PO₄	Α	В	A
Potassium carbonate	K₃CO₃	A		A
Potassium chloride	KCI	Α		А
Potassium chlorate	KCIO ₃	A		A
Potassium hydroxide	КОН	В	С	В
Potassium iodide	KI	A		A
Potassium nitrate	KNO ₃	Α	A	A
Propane	C ₃ H ₈	A	В	A
Propylene glycol	CH₃CH(OH)CH₂OH	A		A
Pyridine	C ₅ H ₅ N	С	В	С
Sea water		A	А	A
Soap		A	A	A
	Na-CO-		_ ^	
Sodium carbonate(Soda)	Na ₂ CO ₃	A		A
Sodium aluminate	Na ₃ AIO ₃	A		A
Sodium bisulphite	NaHSO ₃	Α		A
Sodium hydroxide	NAOH	С	С	С
Sodium silicate	(WATER GLASS)	Α	Α	Α
Sodium sulphate	Na ₂ SO ₄	A	Α	А
Sodium sulphide	Na ₂ SO ₄	A		A
Starch	(C ₆ H ₁₀ O ₅)X	A		A
Steam	H ₂ O	B*	B*	B*
Sulphur dioxide	SO ₂	С	В	С
Sulphuric acid(50%)	H ₂ SO ₄	С	С	С
Sulphurous acid	H ₂ SO ₃	В		В
Tannic acid	C ₇₆ H ₅₂ O ₄₆	A	Α	А
Tar(Asphalt)		В	В	В
Tartaric acid		A		A
Tetrachloroethane	C ₂ H ₂ Cl ₄	c	С	C
r cu acriioi deu la re	C21 12C14		ر	- -
	C ₆ H ₅ CH ₃	В	С	В
	Christing			
Toluene Transformer oil	Cariscris	А	В	A
	CH ₃ COOC ₂ H ₃	A	B C	A
Transformer oil		+		

■ THE SYMBOLS USED AS FOLLOWS

- A : Suitable for application
- B : Suitablility depends on Operating conditions
- B*: Suitablility depends on Operating conditions, Consult JEIL's Technical Team
- C : Not Suitable

The Theory of Evolution at Soft Gasket Materials!!

Head Office & Plant(본사)

309, Chungnyeol-ro, Yangsan-si, Gyeongsangnam-do, Korea 경남 양산시 충렬로 309 (유산동)

Tel 82. 55. 383. 1301 Fax 82. 55. 383. 0853

SEOUL Office(서울사무소)

4-27, Yangjae-daero 71-gil, Songpa-gu, Seoul, Korea 서울특별시 송파구 양재대로 71길 4-27 (방이동)

Tel 82. 2. 413. 6090 Fax 82. 2. 413. 6493

YEOSOO Office(여수사무소)

21, Saeteo-ro, Yeosu-si, Jeollanam-do, Korea 전남 여수시 새터로 21(신기동)

Tel 82. 61. 685. 1150 Fax 82. 61. 685. 1151

HWASEONG Office & Plant(화성공장)

11, Madogongdan-ro 4-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do, Korea 경기도 화성시 마도면 마도공단로 4길 11 (쌍송리, 제일이엔에스(주))

Tel 82. 31. 357. 6751 Fax 82. 31. 357. 6754

JEIL Precision Industry(제일정공)

73, Jwasam-gil, Sangbuk-myeon, Yangsan-si, Gyeongsangnam-do, Korea 경상남도 양산시 상북면 좌삼길 73

Tel 82. 55. 375-2361 Fax 82. 55. 375-2371

QINGDAO Office & Plant(청도공장)

Haibin Factory Complex, Jiaonan-City, Qingdao, China 청도 교남시 해빈공업원 (청도 제일밀봉제품 유한 공사)

Tel 86. 532. 8513. 6021 Fax 86. 532. 8513. 6020

